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Abstract

The present paper describes an iterative procedure for BEM–BEM coupling. The paper presents suitable interface
conditions and algorithms for iteratively coupling sub-domains modeled by three different boundary element time-domain
formulations, namely: acoustic and elastodynamic BEM formulations based on time-dependent Green’s functions and
non-linear time-domain approach which employs elastostatic Green’s functions and therefore requires domain discretiza-
tion. Two examples are analyzed and at the end of the paper conclusions of the study are presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical solution algorithms for wave propagation analysis may give inaccurate results or else become
unstable when the medium being considered is composed of sub-domains with too different physical proper-
ties, when different media interact either through common interfaces, as is the case of soil–fluid–structure
interaction analyses, or by forming a mixture, e.g. poroelastic media. Inaccurate and unstable time-domain
algorithms may also occur when two different numerical methods are coupled, e.g. the boundary element
method (BEM) and the finite element method (FEM); this problem may become even more serious when cou-
pled algorithms and different physical media are considered simultaneously in the same analysis.

There are many strategies in the FEM literature concerning the subject described in the last paragraph [1,2],
one simple but efficient approach being subcycling [3–5]. Researchers dealing with the finite difference method
(FDM) also proposed strategies to deal with interaction between different media; robust strategies have
been proposed, some of them are widely used [6–8]. When no special procedure is employed to deal with this
problem, e.g. assemble of the global matrix follows standard FEM procedures for homogeneous media, the
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coupling between two different regions is referred to as ‘‘direct coupling’’; subcycling and other iterative strat-
egies will be referred here as ‘‘iterative coupling’’.

The idea of direct coupling BEM sub-domains by enforcing equilibrium and compatibility of common
interface unknowns are reported in the very first BEM texts [9]. The direct coupling idea was soon extended
to couple the BEM with other numerical methods, especially the FEM, as reported by Zienkiewicz et al. [10]
and Brebbia and Georgiou [11], for static problems. Less than a decade afterwards, direct coupling procedures
started being employed to many problems, including time-domain wave propagation modeling.

Many algorithms have already been reported concerning BEM–FEM direct coupling for time-domain wave
propagation (acoustic, elastic, etc.) analysis [12–18]. On those algorithms, boundary elements either played the
rule of a transmitting boundary or (less usual) modeled parts of the domain most suitable to BEM modeling.
A good transmitting boundary is in fact a critical requirement in wave propagation analyses of infinite domain
problems, because when waves are not properly transmitted to infinity, artificial reflections on the transmitting
boundaries may very soon invalidate results.

Most papers dealing with time-domain fluid–soil–structure interaction employ direct coupling to fulfill
equilibrium and compatibility conditions on BEM–BEM or BEM–FEM interfaces. Initial papers dealing with
BEM–FEM/BEM–BEM coupling for fluid–structure (acoustic–elastic may be a more adequate designation)
interaction were concerned with the establishment of a suitable direct coupling approach [14], which could be
extended to more complex cases, e.g. non-linear models [18]. More recently, publications concerning stability
started appearing, enabling the classical direct coupling algorithms to be applied to more severe situations
[19,20]. Direct coupling for soil–structure interaction has also been exhaustively studied, following guidelines
similar to those concerning fluid–structure interaction [12,13,15,17].

In recent years, iterative coupling algorithms have been reported as a promising technique [21]: they may
become more accurate, stable, flexible and cheaper than direct coupling procedures. In the iterative coupling
algorithms, equilibrium and compatibility at common interfaces are achieved iteratively. The cost of each iter-
ation is much lower than that of direct coupling algorithms, as the order of the various system of equations to
be solved in each iteration is typically lower than the order of the system obtained with direct coupling
approaches. Thus, as usually the algorithm converges in very few iterations and the iterative process is already
necessary in order to solve some possible non-linear behavior, the overall cost of the iterative coupling is lower
than that of the direct coupling. Moreover, as each sub-domain is solved independently, one may take advan-
tage of the characteristics of each system of equations, in order to reduce the computer time. This possibility
can be explored when different numerical methods are employed (e.g. FEM matrices are symmetric, positive
definite and sparse, whereas BEM matrices are non-symmetric and fully populated) or else, when different
media are present and iterative solvers are employed for each sub-domain.

The good performance reported in the literature by iterative coupling for time-independent problems
[22,23] encouraged researchers to work out procedures for time-dependent problems. Only a few papers con-
cerning this subject have been published so far, most of them dedicated to BEM–FEM coupling [24–26]. For a
detailed text concerning iterative BEM–BEM coupling in time domain, the reader is referred to Soares Jr.
et al. [27]. As reported by Soares Jr. et al. [24–27], besides being cheaper than direct coupling algorithms, iter-
ative coupling approaches are quite robust, and should be preferred especially in the case where there are
media with quite different physical properties (of the same or different nature). As it has been shown [26], iter-
ative coupling algorithms are stable in cases where direct coupling procedures are not, as the former easily
allows considering different time-steps for different sub-domains.

In a previous paper [27], the authors reported good results for a time-domain iterative BEM–BEM coupling
approach, being the classical TD-BEM formulation [28] employed to model infinite sub-regions and the D-
BEM approach [29] employed to model regions having plastic behavior. This approach is briefly reviewed
here, for the sake of completeness. The present paper describes the conditions for iteratively coupling sub-
domains modeled by three different boundary element time-domain formulations: (i) formulation I: the acous-
tic time-domain formulation presented by Mansur [28], which is based on time-dependent Green’s functions;
(ii) formulation II: the elastodynamic time-domain formulation presented by Mansur [28], also based on time-
dependent Green’s functions; (iii) formulation III: the elastodynamic time-domain approach which employs
the static case Green’s functions, and therefore requires domain discretization. This last formulation is used
here to model regions with plastic behavior.
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Two examples are presented, results being compared with those obtained by direct coupling approaches. At
the end of the paper, the conclusions of the study are presented.
2. Boundary element formulations

The first BE formulation focused here is for acoustics and in Section 2.1, the basic BE equations for the
solution of acoustic fluids are shown. In the sequence (Sections 2.2 and 2.3), two BE formulations related
to dynamic problems are presented: the first one considers dynamic time-domain fundamental solutions
and the second one makes use of static fundamental solutions. In the present work, soils or/and structures
will be modeled by these dynamic BE formulations. Once the selected boundary element formulations have
been briefly discussed, the coupling of these different techniques is considered in Section 3.

2.1. Formulation I

In the present section, acoustic wave propagation in fluids is considered. The integral equation, which
solves the acoustic model in focus, is given by [28]:
cðnÞpðn; tÞ ¼
Z tþ

0

Z
C

p�ðX ; t; n; sÞqðX ; sÞdCðX Þds�
Z tþ

0

Z
C

q�ðX ; t; n; sÞpðX ; sÞdCðX Þdsþ sðX ; t; n; sÞ

ð1Þ

where C is the boundary of the body, c(n) depends on the geometry and the terms p*(X,t;n,s) and q*(X,t;n,s)
represent the fundamental potential (hydrodynamic pressure) and flux, respectively. X is the field point; n is
the source point and s(X,t;n,s) stands for possible domain integrals contributions (initial conditions or/and
body forces).

Adopting the following space-time approximations for the variables of the model (g and / are space and
time interpolation functions, respectively, related to a boundary node j and a discrete time m):
pðX ; tÞ ¼
XJ

j¼1

XM

m¼1

/m
p ðtÞgj

pðX Þpm
j ð2aÞ

qðX ; tÞ ¼
XJ

j¼1

XM

m¼1

/m
q ðtÞgj

qðX Þqm
j ð2bÞ
the following system of equations can be obtained:
CPn ¼ G1Qn �H1Pn þ Ln þ Sn ð3aÞ

Ln ¼
Xn�1

m¼1

ðGn�mþ1Qm �Hn�mþ1PmÞ ð3bÞ
where C, G and H are influence matrices; Ln is a vector standing for the time convolution process; Sn is a vector
related to domain integrals and Pn and Qn are pressure and flux vectors, respectively, at the discrete time n. After
introducing the boundary conditions of the model, the system of equations (3) can be solved for pressures and
fluxes, at each time tn. For more details concerning the present formulation, the reader is referred to [21,28,30].

2.2. Formulation II

In the present section, dynamic linear models are considered. The integral equation based on dynamic fun-
damental solutions that solves the model in focus is given by [28]:
cikðnÞukðn; tÞ ¼
Z tþ

0

Z
C

u�ikðX ; t; n; sÞskðX ; sÞdCðX Þds�
Z tþ

0

Z
C

s�ikðX ; t; n; sÞukðX ; sÞdCðX Þdsþ sðX ; t; n; sÞ

ð4Þ
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where the terms u�ikðX ; t; n; sÞ and s�ikðX ; t; n; sÞ represent the dynamic fundamental displacement and traction,
respectively (the remainder terms and symbols of Eq. (4) are analogous to the ones depicted in Eq. (1)). Adopt-
ing the following space-time approximations for the variables of the model:
ukðX ; tÞ ¼
XJ

j¼1

XM

m¼1

/m
u ðtÞgj

uðX Þum
kj ð5aÞ

skðX ; tÞ ¼
XJ

j¼1

XM

m¼1

/m
s ðtÞgj

sðX Þsm
kj ð5bÞ
the following system of equations can be obtained:
CUn ¼ G1Tn �H1Un þ Ln þ Sn ð6aÞ

Ln ¼
Xn�1

m¼1

ðGn�mþ1Tm �Hn�mþ1UmÞ ð6bÞ
where the definition of C, G, H, Ln and Sn is analogous to that of Section 2.1 and Un and Tn are displacement
and traction vectors, respectively, at the discrete time n. After introducing the boundary conditions of the
model, the system of equations (6) can be solved for displacements and tractions, at each time tn. For more
details concerning the present formulation, the reader is referred to [21,27,28,30]. The BE formulations I
and II are meant to be employed here mainly as a ‘‘transmitting boundary’’, thus, initial conditions and source
density contributions have not been considered. The reader is referred to Refs. [28,31] for a thorough discus-
sion on this topic.

2.3. Formulation III

In the present section, dynamic non-linear models are considered. The integral equations based on static
fundamental solutions that solves the model in focus (displacements and stresses) are given by [32]:
cikðnÞukðn; tÞ¼
Z

C
u�ikðX ;nÞskðX ; tÞdCðX Þ�

Z
C
s�ikðX ;nÞukðX ; tÞdCðX Þþ

Z
X
e�ikjðX ;nÞrP

kjðX ; tÞdXðX Þ

�
Z

X
u�ikðX ;nÞqf€ukðX ; tÞ�bkðX ; tÞgdXðX Þ ð7Þ

rikðn; tÞ¼
Z

C
u�ikjðX ;nÞsjðX ; tÞdCðX Þ�

Z
C
s�ikjðX ;nÞujðX ; tÞdCðX ÞþgikðX ; tÞþ

Z
X
e�ikjlðX ;nÞrP

jlðX ; tÞdXðX Þ

�
Z

X
u�ikjðX ;nÞqf€ujðX ; tÞ�bjðX ; tÞgdXðX Þ ð8Þ
where X is the domain of the body and the terms u�ikðX ; nÞ, s�ikðX ; nÞ and e�ikjðX ; nÞ, as well as u�ikjðX ; nÞ, s�ikjðX ; nÞ
and e�ikjlðX ; nÞ, represent the elastostatic fundamental solutions. bj(X,t) stands for body forces terms; q is the
mass density of the model and €ujðX ; tÞ stands for the accelerations of the problem to be solved. rP

jlðX ; tÞ rep-
resents the ‘‘initial’’ (plastic) stress components and the free term gikðrP

jlðX ; tÞÞ is due to the derivative of the
initial stress domain integral [33].

Adopting the following generic space approximation for the variables of the model (j stands for boundary
element nodes or cell nodes; dual reciprocity formulations are also possible):
vkðX ; tÞ ¼
XJ

j¼1

gj
vðX ÞvkjðtÞ ð9Þ
the following system of equations can be obtained, after suitable algebraic operations:
CUn ¼ GTn �HUn þWOn
p �M €Un þ Sn ð10Þ

On ¼ G0Tn �H0Un þW0On
p �M0 €Un þ S0n ð11Þ
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where matrices H, G, H 0 and G 0 correspond to the boundary integrals while matrices M, W, M 0 and W 0 cor-
respond to the inertial and initial stress domain integrals (the free term depicted in Eq. (8) is dealt with in W 0).
Vector On stands for the stress nodal values. Sn and S 0n are the vectors related to body force terms and Un and
Tn are displacement and traction vectors, respectively, at time step n.

To solve the system of equations (10) and (11) the boundary conditions of the model have to be considered
and a time-integration scheme has to be adopted (the present work adopts the Houlbot method [34]). More-
over, an iterative algorithm must be considered in order to properly evaluate the problem stress state (elasto-
plastic model). The present work adopts the Newton–Raphson scheme in order to deal with non-linear effects
[35].

After considering the above-mentioned procedures, the system of equations (10) and (11) can be solved for
displacements, tractions and stresses, at each time step. For more details concerning the present formulation,
the reader is referred to [21,27,29,32,35].

3. Coupling procedures

In the present section, a discussion concerning the iterative coupling of the BE formulations previously pre-
sented is carried out. As it has been shown [24–27], iterative coupling is a very versatile procedure. It allows
independent modeling of each sub-domain of the global model: interaction effects are considered by boundary
values, which are iteratively updated along the common interfaces.

In the present text, firstly (Section 3.1) some special procedures, which are used in conjunction with the
adopted iterative coupling, are discussed. In the sequence, the coupling of BE formulations I and III is
described, followed by the coupling of BE formulations I and II. The coupling of BE formulations II and
III was discussed in detail in a previous work of the authors [27], thus, just some basic aspects of this coupling
procedure are presented here.

3.1. Special procedures

The present section describes some important procedures with which the coupled numerical solution
becomes more efficient, accurate and stable. These special procedures are, namely: (i) adoption of a relaxation
parameter a in order to ensure or/and speed up the convergence of the iterative coupling process; (ii) adoption
of space/time interpolation/extrapolation procedures in order to consider independent discretizations for the
different BE formulations.

In the iterative coupling procedures, a relaxation parameter a is introduced, which relates the recent BEM
results ((k+a)V) with the results of the previous iterative step ((k)V) and the final results ((k+1)V) at the current
iterative step. Considering a generic variable V, the adoption of the relaxation parameter a can be described as
follows:
Fig. 1
P I t�IDtð
ðkþ1ÞV ¼ ðaÞðkþaÞVþ ð1� aÞðkÞV ð12Þ

In order to consider different time-steps in each sub-domain, interpolation/extrapolation procedures along
time may be considered. In the present work, the interpolation/extrapolation procedures are based on the
BEM time interpolation functions (e.g. piecewise constant /q(t) and linear /p(t) – Eq. (2)), as depicted by
tU U

U

U

U

t

tt II Δ− tIt

t̂Δ t̂Δ

tIP

P

t

tt II Δ− tIt

tt II Δ−P

tP
P

(a) (b)

. Time interpolation/extrapolation procedures: (a) time extrapolation, €UI t ¼ €Ut; (b) time interpolation, P t ¼ P I tðDt̂=IDtÞþ
1� Dt̂=IDtÞ.



di 

dj 

vj 

vi 

v = I(vk,dk) 

Fig. 2. Space interpolation procedures: interpolation scheme of vk values in order to obtain v (linear interpolation: v = (vidj + vjdi)/
(dj + di)).
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Fig. 1. This figure describes the calculus of some variables that are necessary for the algorithms presented in
the following sections (in the present discussion, it is considered that the solid sub-domain time-step is smaller
than the fluid sub-domain time-step, which is usual). Space interpolation procedures may also be adopted in
order to consider independent BE meshes. In Fig. 2, for instance, a simple scheme is shown to evaluate nodal
values of a sub-domain by means of the nodal values of the adjacent sub-domain, when there is not a direct
connection among the nodes. Using space/time interpolation/extrapolation procedures, optimal modeling of
each sub-domain may be achieved, which is very important in what concerns flexibility, efficiency, accuracy
and stability aspects.

3.2. Coupling of formulations I and III

For a fluid–solid interaction problem, the boundary conditions at coupling interfaces, taking into account
BE formulations I and III, are given by:
IIIT
t
T ¼ 0 ð13aÞ

IIIT
t
N þ IP

t ¼ 0 ð13bÞ

III
€Ut

N � I
€Ut ¼ 0 ð13cÞ
where Eq. (13) is written based on the coupling of BE formulations I and III for a given time value t (thus the
left-side subscripts I and III and the right-side superscript t). The right-side subscripts N and T stand for the
interface normal and tangential components, respectively. In Eq. (13c), the equivalent acceleration I

€Ut is given
by I

€Ut ¼ ð1=qÞIQt, where q is the mass density of the fluid.
In the iterative coupling approach being considered, natural boundary conditions are prescribed, at the

common interfaces, for each sub-domain (either modeled by the BE formulation I or III). The accelerations
evaluated at the sub-domains modeled by formulation III are used to obtain the fluxes (prescribed interface
boundary condition) for the sub-domains modeled by formulation I (Eq. (13c)); the pressures evaluated at
the sub-domains modeled by formulation I are used to obtain the tractions (prescribed interface boundary
condition) for the sub-domains modeled by formulation III (Eqs. (13a) and (13b)). Concisely, each sub-
domain is solved separately (III

€Ut and IP
t are evaluated at each iterative step) and the interface relations

III
€Ut ! IQ

t and IP
t! IIIT

t are iteratively considered until convergence is achieved. A basic algorithm solution
for the coupling of BE formulations I and III is shown in Table 1.

3.3. Coupling of formulations I and II

For the coupling of formulations I and II, Eq. (13) can analogously be used; however, since BE formulation
II usually does not evaluate accelerations, Eq. (13c) must be adapted.

In order to relate the fluxes (IQ
t) of the BE formulation I with the displacements (IIU

t) of the BE formu-
lation II (adaptation of relation (13c)), the characteristics of the time interpolation function /q(t) is here taken
into account. Once the present work adopts /q(t) as being piecewise constant, an equivalent displacement IU

t

can be obtained from the equivalent acceleration I
€Ut by time integration, as follows:



Table 1
Iterative coupling of BE formulations I and III

(1) Initial calculations
(1.1) Time steps for each sub-domain are selected (IDt, IIIDt)

The following initial time attribution is adopted: It = IDt; IIIt = 0

(1.2) BEM standard initial calculations are considered (e.g. influence matrices G1, H1, etc.)

(1.3) Initial prescribed values are chosen at the common interface surfaces (e.g.
ð0Þ
III T ¼ 0)

(2) Time-step loop
(2.1) Beginning of evaluations at each time step:

update IIIt = IIIt + IIIDt

If IIIt > It then: update It = It + IDt and evaluate vectors ILI t and ISI t

(2.2) Iterative loop
(2.2.1) Solve BE formulation III: obtain

ðkþaÞ
III

€U
IIIt

(2.2.2) Adoption of relaxation parameter:
ðkþ1Þ
III

€U
IIIt

¼ ðaÞðkþaÞ
III

€U
IIIt

þ ð1� aÞðkÞIII
€U

IIIt

(2.2.3) From
ðkþ1Þ
III

€U
IIIt

N obtain
ðkþ1Þ
I

€U
IIIt

(Eq. (13c)/space interpolation – Fig. 2)

(2.2.4) From
ðkþ1Þ
I

€U
IIIt

obtain
ðkþ1Þ
I

€U
It

(time extrapolation – Fig. 1(a))

(2.2.5) Solve BE formulation I: obtain
ðkþ1Þ
I PIt

(2.2.6) From
ðkþ1Þ
I PIt

obtain
ðkþ1Þ
I PIIIt

(time interpolation – Fig. 1(b))

(2.2.7) From
ðkþ1Þ
I PIIIt

obtain
ðkþ1Þ
III TIIIt

(Eqs. (13a) and (13b)/space interpolation – Fig. 2)
(2.2.8) Check for convergence

(2.3) Updating (and printing) of BE formulation III results
If IIIt + IIIDt > It then: updating (and printing) of BE formulation I results

(2.4) Go to the next time step until the analysis is finished

(3) End of calculation
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IU
t ¼ IU

t0 þ I
_Ut0ðt � t0Þ þ I

€Utðt � t0Þ2=2 8t 2 ðt0; t0 þ IDt� ð14Þ

where IDt is the time-step of the BE formulation I. According to Eq. (14), along each time-step IDt, the equiv-
alent displacements, velocities and accelerations (BE formulation I) have parabolic, linear and piecewise con-
stant behavior, respectively (Fig. 1(a)). Eq. (14) is equivalent to the Newmark method [36], adopting the
parameters: c = 1.00 and b = 0.50. Eq. (14) has also been applied to some BEM–FEM coupling algorithms
[37], giving good results.

Finally, a relation between IIU
t and IQ

t can be numerically established as follows: analogously to Eq. (13c),

IU
t can be related to IIU

t
N and, in the sequence, IQ

t can be related to IU
t by taking into account Eq. (14) (cal-

culus of I
€Ut) and relation I

€Ut ¼ ð1=qÞIQt.
In the iterative coupling of formulations I and II, natural boundary conditions are prescribed, at the com-

mon interfaces, for each sub-domain (either modeled by the BE formulation I or II). The displacements eval-
uated at the sub-domains modeled by formulation II are used to obtain the fluxes (prescribed interface
boundary condition) for the sub-domains modeled by formulation I (see discussion above); the pressures eval-
uated at the sub-domains modeled by formulation I are used to obtain the tractions (prescribed interface
boundary condition) for the sub-domains modeled by formulation II (analogously to Eqs. (13a) and (13b)).
Concisely, each sub-domain is solved separately (IIU

t and IP
t are evaluated at each iterative step) and the inter-

face relations IIU
t! IQ

t and IP
t! IIT

t are iteratively considered until convergence is achieved. A basic algo-
rithm solution for the coupling of BE formulations I and II is shown in Table 2.

3.4. Coupling of formulations II and III

Taking into account a solid–solid interaction problem, the boundary conditions (equilibrium and continu-
ity conditions, respectively) at coupling interfaces are given by:



Table 2
Iterative coupling of BE formulations I and II

(1) Initial calculations
(1.1) Time steps for each sub-domain are selected (IDt, IIDt)

The following initial time attribution is adopted: It = IDt; IIt = 0

(1.2) BEM standard initial calculations are considered (e.g. influence matrices G1, H1, etc.)

(1.3) Initial prescribed values are chosen at the common interface surfaces (e.g. II
(0)T = 0)

(2) Time-step loop
(2.1) Beginning of evaluations at each time step

Update IIt = IIt + IIDt and evaluate vectors IIL
IIt and IIS

IIt

If IIt > It then: update It = It + IDt and evaluate vectors IL
It and IS

It

(2.2) Iterative loop
(2.2.1) Solve BE formulation II: obtain

ðkþaÞ
II UIIt

(2.2.2) Adoption of relaxation parameter:
ðkþ1Þ
II UIIt ¼ ðaÞðkþaÞ

II UIIt þ ð1� aÞðkÞII UIIt

(2.2.3) From
ðkþ1Þ
II UIIt

N obtain
ðkþ1Þ
I UIIt

(space interpolation – Fig. 2)

(2.2.4) From
ðkþ1Þ
I UIIt

obtain
ðkþ1Þ
I

€U
IIt

(Eq. (14)):
ðkþ1Þ
I

€U
IIt

¼ ð2=Dt̂2Þððkþ1Þ
I UIIt � IUIt�IDtÞ � ð2=Dt̂ÞðI _UIt�IDtÞ

(2.2.5) From
ðkþ1Þ
I

€U
IIt

obtain
ðkþ1Þ
I

€U
It

(time extrapolation – Fig. 1(a))

(2.2.6) Solve BE formulation I: obtain
ðkþ1Þ
I PIt

(2.2.7) From
ðkþ1Þ
I PIt

obtain
ðkþ1Þ
I PIIt

(time interpolation – Fig. 1(b))

(2.2.8) From
ðkþ1Þ
I PIIt

obtain
ðkþ1Þ
II TIIt

(Eqs. (13a) and (13b)/space interpolation – Fig. 2)
(2.2.9) Check for convergence

(2.3) Updating (and printing) of BE formulation II results
If IIt + IIDt > It then: updating (and printing) of BE formulation I results (including IUI t ¼ IUI t�IDt þ ðIDtÞI _UIt�IDt þ ðIDt2=2ÞI €UI t

and I
_UI t ¼ I

_UI t�IDt þ ðIDtÞI €UI t)

(2.4) Go to the next time step until the analysis is finished
(3) End of calculation

Fig. 3
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IIIT
t þ IIT

t ¼ 0 ð15aÞ
IIIU

t � IIU
t ¼ 0 ð15bÞ
where Eq. (15) is written based on the coupling of BE formulations II and III for a given time value t (thus the
left-side subscripts II and III and the right-side superscript t).

In the iterative coupling of formulations II and III, at the common interfaces, natural boundary conditions
are prescribed for the sub-domains modeled by the BE formulation III and essential boundary conditions are
prescribed for the sub-domains modeled by the BE formulation II. The displacements evaluated at the sub-
domains modeled by formulation III are used to obtain the interface displacements (prescribed interface
 f(t)
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. Sketch of the dam-reservoir system: fluid–structure interaction problem (point A: x = 30 m, y = 60 m; point B: x = 35 m,
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Fig. 4. BEM meshes for the dam: (a) boundary discretization – 34 linear boundary elements (BE formulations II and III); (b) domain
discretization – 102 linear triangular cells (BE formulation III).
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boundary condition) for the sub-domains modeled by formulation II (Eq. (15b)); the tractions evaluated at the
sub-domains modeled by formulation II are used to obtain the tractions (prescribed interface boundary con-
dition) for the sub-domains modeled by formulation III (Eq. (15a)). Concisely, each sub-domain is solved sep-
arately (IIIU

t and IIT
t are evaluated at each iterative step) and the interface relations IIIU

t! IIU
t and
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Fig. 5. Vertical displacements at point A: (a) H = 35 m; (b) H = 50 m.
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IIT
t! IIIT

t are iteratively considered until convergence is achieved. The iterative coupling of formulations II
and III is described in detail in [27].

4. Numerical applications

Two numerical examples are considered here. The first one deals with a loaded dam retaining the water of a
storage-lake (fluid–structure interaction problem). The second one is concerned with the analysis of a channel
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Fig. 7. Vertical displacements at point A considering different interface relations (IIU
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t) for the coupling of BE formulations I and II.



 3.0  1.0 0.5

 0.5

 1.5

 1.0 

 2.0 

 5.0

FLUIDO

ESTRUTURA

SOLO
A

 f (t)

STRUCTURE

 FLUID 
  SOIL 
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(fluid–soil–structure interaction problem). For some examples concerning solid–solid interaction problems,
the authors’ previous work [27] is indicated. For all examples presented here, a relaxation parameter
a = 0.5 was adopted.

4.1. Example I

In this first example, a dam-reservoir system, as depicted in Fig. 3, is analyzed [14]. The structure is sub-
jected to a sinusoidal distributed vertical load on its crest, acting with an angular frequency w = 18 rad/s.
The material properties of the dam are: Poisson’s ratio m = 0.25; Young’s modulus E = 3.437 · 106 N/m2;
mass density q = 2000 kg/m3. The adjacent fluid is characterized by a mass density q = 1000 kg/m3 and a wave
velocity c = 1436 m/s.

The dam-reservoir system is solved here taking into account the coupling of BE formulations I and II, as
well as the coupling of BE formulations I and III. The BEM meshes adopted to model the dam are depicted in
Fig. 4: 34 linear boundary elements of equal length (BE formulations II and III) and 102 linear triangular cells
Fig. 9. BEM meshes: (a) BE formulation I – 36 linear boundary elements; (b) BE formulation II – 118 linear boundary elements; (c) BE
formulation III – 74 linear boundary elements and 196 linear triangular cells.
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Fig. 10. Channel system modeling: (a) model 1 (structure); (b) model 2 (fluid–structure); (c) model 3 (soil–structure); (d) model 4 (fluid–
soil–structure).
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Fig. 11. Displacements at point A for models 1, 2, 3 and 4: elastic analysis.
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Fig. 12. Displacements at point A for models 1, 2, 3 and 4: elastoplastic analysis.
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(BE formulation III) are employed. To model the fluid, acoustic boundary elements of constant length ‘ = 5 m
(BE formulation I) have been adopted (the number of elements depends on the water level H). Different time-
steps were considered for each sub-domain (in order to obtain an optimal modeling within each sub-domain),
they are: IDt = 0.003 s; IIDt = 0.003 s and IIIDt = 0.001 s.

In Fig. 5, vertical displacements time history at point A is depicted, taking into account two different water
levels: H = 50 m and H = 35 m. In Fig. 6, the hydrodynamic pressures at point B are shown. As one can
observe, the results considering the coupling of BE formulation I and II and the coupling of BE formulation
I and III are in good agreement between each other, as well as with the results previously presented by von
Estorff and Antes [14].

In Fig. 7, vertical displacements at point A are depicted (H = 50 m) considering different interface relations
(IIU

t! IQ
t) for the coupling of BE formulations I and II. As it has been discussed, the present work adopts

Eq. (14) to relate IIU
t and IQ

t. Eq. (14) is consistent with the BE formulations in use. Once one takes into
account other non-consistent relations to relate IIU

t and IQ
t (e.g. Newmark’s Trapezoidal rule – see Fig. 7,

the Houbolt method, etc.), instabilities may occur.

4.2. Example II

In this example, a fluid–soil–structure interaction problem is analyzed [21]. A sketch of the model is
depicted in Fig. 8. The material properties are: (i) fluid: mass density q = 1000 kg/m3; wave velocity
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c = 1436 m/s; (ii) soil: Poisson’s ratio m = 0.3; Young’s modulus E = 2.66 · 107 kN/m2; mass density
q = 2700 kg/m3; (iii) structure: Poisson’s ratio m = 0.25; Young’s modulus E = 8.87 · 106 kN/m2; mass density
q = 1500 kg/m3. A perfectly plastic material obeying the von Mises yield criterion is assumed for the structure
with uniaxial yield stress r0 = 6.0 · 103 kN/m2.

The BEM meshes adopted to model each sub-domain are presented in Fig. 9. The time steps adopted are, at
each sub-domain: IDt = 12 · 10�5 s (b � 0.69); IIDt = 12 · 10�5 s (b � 0.87) and IIIDt = 3 · 10�5 s (b � 0.32),
where b = cDt/‘. Four different models, taking into account different interaction levels, are employed to solve
the problem, as depicted in Fig. 10. Displacements at point A are depicted in Figs. 11 and 12, taking into
account elastic and elastoplastic models, respectively. As one can notice, significant difference may be observed
according to the different levels of interaction adopted.
5. Conclusions

The present paper presented iterative BEM–BEM coupling procedures to model time-domain wave prop-
agation through different interacting physical sub-regions. The following BEM formulations were considered
here: (i) formulation I: acoustic time-domain formulation based on time-dependent Green’s functions; (ii) for-
mulation II: elastodynamic time-domain formulation based on time-dependent Green’s functions; (iii) formu-
lation III: dynamic time-domain formulation based on static Green’s functions, employed here to model
regions with elastoplastic behavior. Formulations I and II are quite suitable for infinite domain cases and
for bounded domain linear analyses, whereas formulation III is ideal when one wishes to deal with non-linear
behavior (elastoplastic analysis in the present case) by a BEM approach.

A new procedure for coupling time-domain acoustic and elastic (or elastoplastic) BEM algorithms has been
introduced. The examples analyzed showed that the proposed procedure leads to stable and accurate results
for both cases studied: coupling of formulations I and II, and coupling of formulations I and III. Good results
concerning the coupling of formulations II and III were also once more presented.

The iterative coupling procedure presented converges in few iterations (see Ref. [27]), thus, it is more
economical than direct coupling approaches. As shown here, iterative coupling approaches bears another
important advantage over direct coupling: different time steps and mesh refinement are allowed for each
sub-domain; thus, it is possible to achieve stability in cases where direct coupling algorithms lead to unsta-
ble results.
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